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The glass transition in linear polymers 

D. C. W. MORLEY 
Corporate Laboratory, ICI Limited, Runcorn, Cheshire, UK 

It is suggested that polymeric materials undergo the glass transition when the energy 
contained in the scissoring modes of vibration of the polymer backbone becomes 
comparable with the van der Waals forces restraining the end of a vibrating segment. 
As the temperature is raised the vibrating segments gradually increase in length, causing 
large changes in the macroscopic properties. It is shown that for certain polymers the 
glass transition temperature may be calculated from first principles. The glass transition 
temperature depends upon molecular weight and the change in specific heat at this tem- 
perature may be quite accurately calculated. 

1. Introduction 
Many polymers undergo a change of state 
called the glass transition when their temperature 
is raised sufficiently above the absolute zero and 
the transition is identified by substantial changes 
in the properties of the polymer. The pheno- 
menology of the transition and an introduction 
to the previous theoretical approaches are 
described in two review articles by Shen and 
Eisenberg [1, 2]. 

In this paper, a mechanism is suggested which 
accounts for some of the qualitative characteris- 
tics of the glass transition, and which also 
enables one to estimate the numerical value of 
the glass transition temperature for a simple 
polymer. 

2. The mechanism of the glass 
transition 

Consider a cube of amorphous polymeric 
material, of mass 1 g. Let the polymer be linear 
and have two different types of carbon atom 
alternately along its backbone (the calculations 
could thus refer say to polyvinyl chloride but not 
to polyethylene or polydiancarbonate). Assume 
initially that all the polymer molecules have the 
same number of atoms, and that the cube is at 
some temperature remotely below the material's 
glass transition point. 

If the geometrical arrangement of the in- 
dividual polymer molecules in the cube was 
examined in detail, most of the carbon atoms 
would most certainly be found to be bound to 
neighbours by van der Waals forces. However, 
because of the amorphous nature of the material 
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it seems clear that a number of chain segments 
would be found where constituent atoms are 
either unbound or only weakly bound to their 
neighbours. "Segment" in this context means a 
number of repeat units in the polymer backbone. 

A schematic representation of an unbound 
segment is shown in Fig. I. A number of carbon 
atoms in the chain are shown as being so 
arranged that they lie outside the potential wells 
of their neighbours. The terminal atoms A and B 
are bound and the segment is counted as being 

'NON-END ~ FREE END 
FREE SEGMENT 

Figure 1 A section taken through a polymer sample 
showing in stylized form how a free segment might look. 
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Figure 2 Illustration of the scissoring mode. 
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N + 2 atoms in length. This segment is able to 
take up certain longitudinal modes of vibration; 
one of these, the scissoring or "accordion" 
mode, is shown in Fig. 2. In both classical and 
quantum mechanics, the normal frequencies of 
vibration and, hence, the energy at a temperature 
TK can be calculated. 

We suggest that if the temperature (and, 
therefore, the vibrational energy) becomes 
sufficiently large, then the van der Waals forces 
constraining an end atom, A, to remain near its 
neighbour, A', will be insufficiently large to 
maintain the configuration. The vibrating seg- 
ment wilI then increase its length. If the tem- 
perature is increased sufficiently, a time will 
come when the test cube consists wholly of 
vibrating segments, rather than containing only 
a few. Such a change will clearly be reflected in 
gross changes of the measurable physical 
properties of the bulk sample. 

It is easy to determine that the vibrational 
energy for short segments at say 250K is a few 
times 10 - ~  erg. This is exactly the order of 
magnitude of the van der Waals forces holding 
the polymer chains together. 

3. Calculation of vibrational energies 
Consider a segment similar to that of Fig. 1. Let 
there be 2N free carbon atoms having alternately 
masses m~ and ms, with m~ > m s. The normal 
frequencies of vibration, co~, must first be found 
and then the energy is calculated from these 
using [3] 

h~ ergs per 
W = . [exp(h~oJ2~rkT)-  1] segment. (1) 

The problem of the normal modes of different 
types of chain have been discussed by a number 
of authors, amongst whom Born [4], Brioullin 
[5], Smith [6], Wallis [7], Rosenstock [8], 
Genensky and Newell [9], Stockmayer and 
Hecht [10], Kirkwood [11 ] and Zbinden [12] all 
make points relevant to the present discussion. 

Before discussing the zig-zagged chain it is 
convenient to recall the result for a linear chain 
such as that schematized in Fig. 3. Let the 
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Figure 3 Linear diatomic chain, showing the equilibrium 
and displaced positions. 

spring constant be ~, dyn cm-L By writing the 
equations of motion for each particle and im- 
posing suitable boundary conditions, one can 
solve these equations [4, 12] to obtain the 
frequencies COs of the normal modes, o~s is given 
by 

~Os 2 =  ~:• ~ -4c~ f l s in  -~- (2) 

with 

s =  1 , . . . ,  N/2 .  

For each value of s, there are two values of 
frequency: those corresponding to the positive 
sign are said to be on the optical  branch; the 
remainder (negative sign) on the acoustic 
branch. The situation is shown in Fig. 4. 

The case of a tetrahedral zig-zagged chain is 
similar, but is considerably more complicated 
in calculational detail. Kirkwood [11] derived 
the form for the normal frequencies for the case 
where m 1 = ms. Zbinden [12] extended this 
calculation to cover the case ml ~ ms. Un- 
fortunately, Zbinden's calculation does not 
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Figure 4 Frequency versus wave number for a diatomic 
linear chain. 
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yield such a simple formula as Equation 2: there 
are two acoustic branches, and two optical 
branches and for any given value of s, the 
frequencies are the solution of a fourth order 
equation having rather complicated coefficients. 

Numerical calculation of the normal frequen- 
cies [13] using Zbinden's method is simple and, 
hence, the energies of vibration at any tempera- 
ture can be obtained. However it is necessary to 
assume that the energy of a distorted chain is 
the same as that of a fully extended one [11]. 

4. The distribution of unbound 
segments 

In Section 2 it was explained that, because of the 
amorphous nature of the polymer, one should 
expect to find short segments of chains whose 
members were not bound to their neighbours. It it 
were not so, it would be rather difficult to imagine 
how the sample cube could not be crystalline. 
The problem is to determine what distribution of 
free segments there are at low temperatures. The 
result will be described as a distribution D(1), 
D(2) . . . . . .  D(N), in which D(i) is the number 
of  free segments of length, i, in a 1 g test cube. 

The experimental observations can be ex- 
plained by assuming two types of free segment: 
first the ends of the polymer molecules must be 
free. This is almost demanded by the pheno- 
menology. Studies of the molecular weight 
dependence [15] of the glass transition tempera- 
ture (Tg) show that, to a good approximation, 
Tg (Mw) behaves as 

constant 
r~  (Mw) = r g  (Mw = oo) - Mw (3) 

It is agreed by most authors that the form of  
Equation 3 implies that the chain ends play an 
important role. Bueche [15] has epitomized these 
arguments, but until recently, it has not been 
clear what is special about the chain ends. 
Wallis [7], however, in a very careful analysis, 
has shown that the atoms at the end of a chain 
have large displacements, and it is reasonable to 
interpret the results as meaning that as a polymer 
is cooled from its molten state the vibrating ends 
carve out a small cavern in which they remain 
free to vibrate even at very low temperatures. 
An end probably involves two or three atoms. 

In addition to the free end segments a number 
of "non-end" free segments must also be present 
such as shown in Fig. 1, but a logical method for 
determining their number is not forthcoming. 
Fortunately, the precise distribution chosen has 

TABLE I 

Length of segment No. of such 
segments 

1 2.8 x 1022 

2 5.0 x 1017 

3 3.8 • 1017 

4 1.8 • 1017 

5 5.2 x 1016 

6 9.1 x 1015 

7 9.6 x 101~ 
8 6.1 x 1013 

9 2.3 x 1016 

l0  5.6 x 101~ 

11 8.0 x 108 

12 6.9 x 106 

little effect on the results given here. Table I 
gives the particular distribution of (non-end) 
free segments used in these calculations and this 
distribution is assumed to be a material property 
for all amorphous polymers. The relationship 
of "non-end"  to "end" free segments will be 
discussed further in conjunction with the specific 
heat results, at a later stage. 

5, Method of calculation of the glass 
transition temperature 

The summation procedures implicit in Equation 
1 necessitate the numerical calculation of all 
answers. The calculations are simple but rather 
long, and therefore the program used, together 
with an explanation of the symbols and method, 
have been deposited at the National Lending 
Library [13, 14]. 

In order to determine the position of the 
transition temperature, some measurable 
material property must be calculated. Glass 
transition temperatures are normally found by 
measuring the shear modulus [16], refractive 
index [17], coefficient of expansion [16] or by 
observation of the specific heat [16]. Accurate 
calculation of the modulus and refractive index 
is difficult; however, the specific heat is easily 
obtained from Equation 1. 

0w h ~ 
C~ = ~ T -  27rkT 2 

~ .  wi 2 exp (hwd2crkT) 
�9 [e@ (-~w~2~--~-~) ---- ]-]? erg segment -a K -a (4) 

Consider a free segment of length N repeat 
units at 0 K. When the temperature is raised to 
Tits energy is EN (T). This energy is thought to be 
available to undo the "knots" at the end of the 
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segment. If EN (T) becomes greater than the van 
der Waals energy •1 tying either A or B (see Fig. 
I) to its neighbour, the segment would extend 
by one repeat unit. [E~w~ (T) - v ~] erg are then 
available to undo the next knot, of v 11 erg. 
Assigning an average interaction energy ~, the 
quantities 

~2 = EN+~ ( T )  - 2~ 

E8 = EN+.~ ( T )  - 3~ 

E~ = E x+ ~  ( T )  - I~ 

can be calculated. Determination of l for which 
~ becomes less than 7, the new length of a 
segment at temperature T can be found. Finally, 
by evaluating Cp using Equation 4, the specific 
heat of the scissoring vibrations as a function of 
temperature can be found. The qualitative 
behaviour as shown in Fig. 5~ is always found. 

By such a procedure, the change in specific 
heat at the glass transition temperature can be 
found, and this is independent of any ~. The 
glass transition temperature for a given polymer 
can therefore be determined using its ~ which is 
already known. 

The glass transition temperature is also 
dependent on molecular weight. In the following 
sections the theoretical and experimental results 
for several real systems will be compared. 

0.110 ...,---" 
O-lOO F 

0-9C r ~ /  0"8C 
0.70 

~0'6C 
7t~ O.5 C ~/w= 21600 

~o.3c / 
0.20 
0.10 

c 260 2:~o 2,~o 2 ; 0  2~o 38o  L 
r(K} 

Figure 5 Specific heat versus temperature n e a r  Tg. Only 
the specific heat contribution from longitudinal vibrations 
are shown. The figure shows values for polypropylene 
for both low and high degrees of polymerization. 

6. The specific heat change 
A plot of specific heat, Cp, of polyisobutylene as a 
function of temperature, is shown in Fig. 6 [18]. 
Similar results are observed in almost all 
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Figure 6 The observed dependence of specific heat for 
polyisobutylene. 

polymers, and A Cp lies in the range 0.040 to 
0.120 cal g-1 K-1. Wunderlich [19], by con- 
sidering the data available on many polymeric 
and monomeric glass formers deduced that 

MA Cp ~_ 5.4 cal K -1 (5) 

where M is the molecular weight of a repeat unit, 
e.g. 

--CH~ - CHC1-- 

in polyvinylchloride. Wunderlich and Jones [20] 
subsequently attempted to derive this relation by 
considering the vibrational energies of the poly- 
mer chain; other methods of obtaining this will 
be shown in this section and the constant may be 
calculated to be very close to that deduced by 
Wunderlich. 

The total specific heat of a polymer is mainly 
the sum of the incoherent vibrations of the 
repeat units in the van der Waals fields of their 
neighbours, and the longitudinal vibrational 
energy of the polymer chains, as discussed in 
Section 2. In practice further contributions from, 
for example, rotation of side groups, may be 
seen but these will be ignored as being relatively 
unimportant. The incoherent vibrations will form 
a background steadily increasing with tempera- 
ture. Numerical calculation shows that below 
the glass transition temperature, the specific 
heat contribution from the longitudinal vibra- 
tions is small, being in the order of 10 -a cal 
g-1 K-L As the polymer is taken through the 
transition temperature, the individual polymer 
molecules become free to vibrate longitudinally 
so that a sharp rise in the vibrational specific 
heat is observed. 

The specific heat contribution due to the 
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longitudinal vibrations of a single segment was 
derived as (Section 5) 

h ~ 
Cp = 2~rkT2(~ erg segment -1 K -1 

where 

~i wi ~ exp (hwi/27rkT) 
= �9 [ e ~ , / 2 - - J - E ~ )  - -  i-] = ' 

h = Planck's constant, k = Boltzman's constant. 
The summation is taken over all the normal 
frequencies see [4-61 . 

Since Cv is small below Tg, 

AC~=Cp. 
Where Cp is slightly higher than Tg, say Tg + 
20 ~ C, thus 

C~ h 2 
ACv - 2rdkT,,r cal g-1 K-1 

where J is the mechanical equivalent of heat and 
Cn is the number of polymer molecules per gram. 

2N0 
C ~ -  M 

No = Avogadro's number and Mis the molecular 
weight of a repeat unit. 

Therefore, 

2No h 2 A 
MA Cv = 27rjk T2-,- . 

For the polymer chains to have energies in the 
order of 100 • 10 -~ erg (necessary to undo the 
van der Waals knots), hw/kT must be small 
enough for exp(hw/kT) = 1 + hw/RT to be a 
good approximation. In this case, 

2No k 
MACp - j (1 - hw/2r&T) 

yielding, roughly, MACp ~_ 5.3 cal K -1 which 
agrees well with Wunderlich's value of 5.4 cal 
K - 1  

It is not necessary, however, to employ this 
algebraic calculation to obtain values of A Cp for 
different polymers. The energies and specific 
heats may be calculated numerically as shown in 
[13] and [14]. Table II shows a comparison of 
experimental and calculated values of A Cp while 
Table III gives predicted A Cp values for polymers 
where no suitable experimental data has been 
published. Values of MACp may be obtained 
from the calculated values of A Cp, giving an 
average value, MACv ~_ 5.11 cal K -1, which 
agrees well with Wunderlich's value. 

The calculated values of A Cp refer to com- 
pletely amorphous materials. Partially crystalline 
materials will normally have values of A Cp 
reduced to not more than X.A Cp where X is the 
weight fraction of amorphous material. 

Wunderlich and Jones in [20] attempted to 
calculate the total heat capacity of the polymer, 
using an ingenious addition scheme enabling 
them to make a good estimate of the total 
specific heat at a given temperature even though 
certain necessary information was not available. 
Here, this difficulty in calculating the specific 
heat of the incoherent vibrations is not relevant 
as only the part which is of immediate interest 
has been calculated. 

7. Van der Waals energies 
In order to calculate the glass transition tem- 
perature ~ must be known. The calculations here 
are sensitive to ~, in that a change of a factor of 2 
in 9 alone changes the transition temperature by 
approximately 100K. 

It is interesting to note that the Gibbs- 
DiMarzio theory [1, 2, 21] of glass transition is 

T A B L E  I I  

ACp (cal g-1 K-l) 

Material Calculated Observed Reference 

Polystyrene 0.059 0.060 [23, 24] 
Polyisobutylene 0.072 0.080 [18, 25] 
Polyvinylcbloride 0.086 0.086 [26, 27] 
Polyrnethylmethacrylate 0.060 0.081 [20, 34] 
Polypropylene 0.101 0.116 [20, 34] 
Poly(4-methylpentene-1) 0.062 0.092 [35 ] 
Poly-~-methyl styrene 0.057 0.076 [36] 
Poly-l-pentene 0.065 0.0925 [37] 
Poly-l-butene 0.081 0.0855 [37 ] 
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Material ACe (cal g-1 K-l)  Wunderlich constant 

Polyvinylidenechloride 0.049 4.7 
Polyacrylonitrile 0.113 6.0 
Polymethacrylonitrile 0.088 5.9 
Polyvinylalcohol 0.123 5.4 
Polyacrylic acid 0.083 5.9 

insensitive to 7, where 7̀ may equal infinity 
without adverse effect. However, this does not 
agree with observations in [1 ]. Examination of 
the transition temperatures of polymers with 
two different carbons (to which the present 
results relate), it is immediately clear that 
polyolefins (̀ 7 ~ 2.5 x 10 -14 erg) exhibit tran- 
sition temperatures lying about ]00K below 
hydrogen bonded polymers (̀ 7 _ 5.0 x 10 -14 
erg). The approximate sizes of the van der 
Walls wells for some of the polymers under con- 
sideration can be set within quite narrow ranges. 
Consider two polymer repeat units lying close to 
each other (e.g. Fig. 7a). These are bound by van 
der Waals forces, having a potential energy, 
separation diagram of the qualitative form shown 
in Fig. 7b. In order to separate the two groups 7̀ 
erg, on average, must be expended. 7̀ for short 
range van der Waals forces may be obtained 
from the corresponding values for small mole- 
cules. Extensive investigations of these forces 

(al 

7E R k/ Ts 

Figure 7 Van der Waals forces holding the separate chains 
together. 
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have been made and are explained in [22]. For 
polyolefins and polyethers 7̀ lies in the range 
2.0 • 10 -14 to 3.0 • 10 -14 erg, while for 
hydrogen bonded materials 7̀ _ 5 x 10 -14 erg. 
This value is obtained assuming the strength of 
hydrogen bonds to be around 3 kcal per mole of 
bonds. This corresponds to a well depth of 
,~ 20 • 10 -14 erg. In a two carbon polymer 
A-B-A-B-A-B, where a hydrogen bond can be 
formed between A-A but not between A-B, B-B 
etc, there are four possible bonding patterns: 
AA, AB, BA, BB of which the AA bonds are 
by far the largest. The average must therefore be 
about 5 • 10 -14. 

For polar materials such as polyvinyl chloride, 
and certain others, e.g. polystyrene the value of 
7̀ is not accurately known. These materials are 

further complicated by the knowledge that the 
well depth of Fig. 7b is probably not equal to `7, 
since the polar forces are relatively long range. In 
the following section the glass transition 
temperatures for polyolefins and hydrogen 
bonded materials are calculated with the values 
of 7̀ given above. ,7 for the remaining materials 
has been found by trial and error and will be 
used subsequently to discuss the molecular 
weight dependence. 

8. The glass transition temperatures 
Consider polypropylene. From Section 7 7̀ 
lies in the range 2.0 • 10 -14 to 3.0 x 10 -14 erg. 
The glass transition temperatures calculated as in 
Section 5 and given in detail in [13] and [14], are 
Tg = 240 ~ C and Tg -- 300 ~ C. For the hydrogen 
bonded polyvinyl alcohol the best results are 
~7 = 4.5 • 10-14to 5.5 • 10-14erg,Tg = 390to 
440 K. However, it is likely that~ is the same for 
all polyolefins and therefore the value, 7̀ = 2.3 
x 10 -14 erg, giving Tg = 263 K for polypropylene 
may be chosen and from this the glass transition 
temperatures for the other polyolefins may be 
calculated. These are given in Table IV. The 
results in Fig. 8 show quite reasonable cor- 
relation. It must, however, be noticed that the 
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T A B L E  IV 

Material T9 T, 
calculated observed 

Polypropylene 263 263 
Poly-l-butene 252 250 
Poly-l-pentene 244 235 
Poly-l-hexene 234 225 
Poly-l-octene 221 210 
Polyvinylmethylether 249 255 
Polyvinylethylether 244 250 
Polyvinyl-n-butylether 233 220 

260[ 
~25C"  
ko ~ 
C~ 
~ 24C 

J ~ 23C 
< 

220 

2tC 
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2i0 2~0 2~0 2~0 2~0 2~0 2~0 
OBSERVED T 9 (K) 

Figure 8 Calculated and observed values of Tg for a group 
of weakly bound polymers. �9 is taken to be 2.3 x 10 -1~ 
erg. The 45 ~ line should contain all the points if the theory 
were exactly correct. 

isomeric polyisobutylene and poly-l-butene have 
different observed transition temperatures whilst 
the theory demands that they should be exactly 
equal. 

T A B L E  V 

Material v x 101~ 

Polystyrene 4.75 
Polymethylmethacrylate 4.75 
Poly-e-methylstyrene 6.50 
Polyvinylchloride 4.0 
Polyacrylonitrile 4.25 

Table V gives the effective values of ~ for 
those polymers for which a reasonable estimate 
cannot be made. The values fall between those 
of the polyolefins (low) and the hydrogen bonded 
polymers (high), as do the values of Tg. 

9. The effect of molecular weight on Tg 
The calculations used previously may also be 
employed to determine the molecular weight 
dependence of the transition temperature. This 
dependence will first be examined qualitatively. 

In Section 1 it was suggested that an amor- 
phous polymer undergoes the glass transition 
when the thermal energy of vibration becomes 
greater than the van der WEals energies holding a 
polymer chain to its neighbours. It was seen 
how, with rising temperature, the free ends of 
the chain gradually extend themselves finally 
leaving the chain essentially disconnected from 
the surroundings. 

Consider a particular molecule from a bulk 
sample, of e.g. 100 carbons long. At low tem- 
peratures, two or three carbons at each end of 
the chain are free. In order for the whole mole- 
cule to become free, each "end" must attain 
enough thermal energy to undo (100/2) - 2 = 48 
van der Waals "knots"; similarly, each end of 
a molecule 500 carbons long would have to gain 
enough energy to undo 248 knots. Therefore the 
polymer sample containing the longer molecules 
will have to be raised to a higher temperature 
before it undergoes the glass transition. The glass 
transition temperature is, therefore, dependent 
upon the length of the molecule, and the role of 
the chain ends is now quite clear. 

The glass transition temperature as a function 
of molecular weight may now be calculated, 
given an approximate value of ~, the average 
intermolecular force. Some values of ~ are 
known, whereas others are set artificially by 
finding a value of ~ which gave the correct 
transition temperature for infinite molecular 
weight (see Section 8 and Table V). Using these 
values of ~7, Tg (P) may be calculated. P is the 
degree of polymerization, i.e. the number of 

units in the chain. 
The specific heat for the scissoring modes of 

polystyrene is shown in Fig. 9 as a function of 
temperature using the degree of polymerization 
as a parameter. From this type of diagram, a 
graph of Tg versus molecular weight may be 
obtained. The graph for polystyrene is shown in 
Fig. 10. Clearly 

rg  = Tg ( ~ )  - Alp 
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m 2 = 90; ~ = 4.75) and changing ms and ~, the 
o.o~ values of A given in Table VII are obtained. 

These show that A increases both with rn~/m~ 
o.os and ~. The values of A calculated by this method 

-0 .o4  do not agree in detail with the experimental 
values, however, they are of the correct order of 

'~ 0.03 magnitude. 

,~ 0.02 

T A B L E  V I I  
0,01 

~6 mJml A x 10 -5 

36o 3:;o 34o 3i, o ' a-~o 
T(K) v = 2.3 x 1014 ~ = 4.75 X 1014 

Figure 9 Specific heat of scissoring mode for polystyrene. (ergs) (ergs) 
The parametrizing number is the number of carbons in the 16/14 0.39 0.48 
backbone. 90/14 0.75 1.50 

lOO 
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o ~ 70 
ko, 
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50 
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(l/Mw}xlO 4 

Figure 10 Glass transition temperature plotted against 
1/Mw. The glass transition temperatures are found from 
Fig. 9 by visually locating the point of maximum slope. 

and A = 1.5 x 1050 . Calculation for all the 
other polymers of Table V, gives the results 
shown in Table VI. 

Additional calculations demonstrate the quali- 
tative effect of changing m2/m 1 and ~ upon the 
value of A. Beginning with polystyrene (ml = 14; 

From Fig. 9 (for polystyrene), it is seen that for 
very low degrees of polymerization the specific 
heat curve has relatively high values of Cp 
immediately below the transition temperature, 
and that the whole transition region is rather 
smooth. It is not clear whether this corresponds 
with experimental observation or not. The model 
for this paper, with all the ends free and being 
2 to 3 atoms long, together with a number of 
non-end free segments, was established in 
Section 4. The distribution of non-end free 
segments was fixed by taking a reasonable 
estimate and checking that the values of Tg and 
Cp were insensitive to the precise distribution 
chosen. It was assumed that this model was a 
fixed material property regardless of molecular 
weight and type of polymer. However, the 
distributions may depend weakly on molecular 
weight and the low molecular weight curves of 
Fig. 9 may be unnecessarily spread out, but at the 
moment the assumption used in Section 4 
seems to be simplest. Further evidence may be 
found, in due course, to enable the distribution 
to be discussed more quantitatively. 

T A B L E  VI  

A x 10 -~ 

Material Calculated Observed Reference 

Polypropylene 0.58 0.86 [28 ] 
Polyvinylchloride 1.10 0.80 [29 ] 
Polyacrylonitrile 1.20 2.80 [30] 
Polymethylmethacrylate 1.40 2.10 [17, 31 l 
Polystyrene 1.50 1.00 [32] 
Poly-~-methylstyrene 1.94 3.60 [33 ] 
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~ ' X ~  X N X N\ 
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(I lM w) x 1 0  4 

Figure 11 Exper imenta l ly  observed behaviour  o f  Tg versus 
1/Mw (after Cowie and  Toporowski) .  Ful l  line - observed 
behaviour ;  dot ted  line - appa ren t  behaviour  if very low 
molecular  weights are ignored.  

Recently some very careful results of Tg 
versus Mw have appeared, in which very low 
molecular weight samples have been included. 
These results show a noticeable deviation from 
the straight line relationship discussed above.The 
real situation is shown in Fig. 11. This low 
molecular weight deviation is not contained in 
the present calculation, and it is not explicable 
as an artefact associated with the finite molecular 
weight range of the experimental sample. It 
seems most likely that the effect is linked with 
conformational changes, and the discussion in 
Section 11 may be relevant here. 

10. Some qualitative considerations 
10.1 Side chains 
It has frequently been noted that the addition of 
an alkyl chain to a vinyl polymer causes a 
reduction of the glass transition temperature. In 
the present model this is an immediate con- 
sequence. Increasing the mass ratio rn2/m ~ for 
fixed ~7 causes the transition temperature to drop. 
This is, of course, only valid as long as the carbon 
and its side chain can be regarded as a point 
mass. The longer the alkyl side chain, the less 
accurate this approximation will be since the 
vibration of the side chain will rapidly get out of  
phase with that of the parent carbon. Thus, it is 
expected that increase in length of a pendant 
chain will cause an initial decrease in the glass 
transition temperature, which becomes less 
marked as the chain length is increased. 

10.2 Plasticizers 
It is possible that one mode of operation of a 
plasticizer is by being adsorbed in some way on 
to the main polymer chain. Therefore, it is 
possible to imagine that not only are the number 
of polymer-polymer van der Waals "knots" 
reduced, but that the effective mass distribution 
in the backbone might be altered in the direction 
of increasing m~/m 1. Both these effects would 
lead to the lowering of the transition tempera- 
ture. Unfortunately reasonably numerate calcu- 
lations appear to be difficult to perform. 

10.3 Crosslinking 
For any theory of the glass transition to be valid 
the effects of crosslinking should be taken into 
consideration, however, because of the com- 
plexity of the experimental situation, this will be 
discussed in a subsequent paper. In order to 
give comparison between as many experimental 
and theoretical results as possible, certain 
inorganic glasses, in addition to carbon-based 
networks, will be discussed. 

11. Discussion 
In this paper some of the consequences of a 
particular model of the glass transition process 
have been examined numerically but these must 
be seen in their proper context. It was postulated 
that the energy contained in the scissoring motion 
of the polymer backbone is an important factor 
in the glass transition. By using Zbinden's 
calculation it was possible to examine some of 
the numerical consequences of the model. 

Previous ideas about the glass transition 
emphasized various conformational changes of 
the polymer. "Stiffness of the chain" or "the 
flexibility" of a certain group are frequently 
referred to in the references. It is clear that the 
ability of the chain to change its conformation 
must play some part in the glass transition, as 
the small but very well established kinetic 
effects at the transition temperature could not 
otherwise occur. 

Kinetic effects are certainly not contained in 
the scissoring mode model. It is suggested that 
here the scissoring energy is the major process 
and that conformational effects are of secondary 
importance. Taking this as a working hypothesis, 
most of the features observed in simple linear 
polymers may be understood in qualitative terms 
at least. This hypothesis has the additional 
advantage of avoiding an important conceptual 
difficulty about how segments in the polymer 
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can be free to rotate.  Some authors  have dis- 
cussed the glass t ransi t ion in terms tha t  imply  
tha t  quite large elements of  the po lymer  back-  
bone  are able to rotate  in the bu lk  state. This 
idea  is difficult to reconcile with geometr ical  
considerat ions.  Examina t ion  of  space filling 
models  seems to imply that  if  any such ro ta t ions  
can take  place, then quite a large segment must  
be involved.  This, in turn,  implies  a large expen- 
di ture o f  energy, so that  even in solut ion this 
sort  o f  process would  tend  to be unl ikely at the 
relat ively low tempera tures  under  consider-  
ation. 
In  the bulk,  where there are many  interfering 
neighbours ,  ro ta t ions  seem even more  unlikely,  
and  would  also seem to imply  a much larger  
change in specific volume than is in fact observed,  

Final ly ,  the re la t ion between the present  
calculat ions and the free volume theories must  
be discussed. I t  can be seen, at  least qual i tat ively,  
tha t  the coefficients of  expans ion  of  the po lymer  
below and above  the glass t rans i t ion  tempera ture  
will be substant ia l ly  different. The  precise 
calculat ion o f  the coefficients o f  expansion leads 
to some difficulty. Calcula t ions  o f  these quanti t ies  
require  some knowledge of  the anharmonic i ty  
o f  the potent ia l  wells. The  me thod  of  es t imat ing 
the coefficient of  expansion o f  a zig-zagged chain,  
wi thout  in t roducing  some adjus table  pa rame te r  
is not ,  at  present,  clear. Nevertheless,  be low the 
t ransi t ion tempera ture  the coefficient of  expan-  
sion will reflect the incoherent  v ibra t ions  o f  the 
chains in the van dee Waa l s  wells of  their  neigh- 
bours ,  whilst  above  it there will be add i t iona l  
terms reflecting the scissoring mode.  Thus it is 
expected that  on a specific vo lume- tempera ture  
p lo t  a change in slope tak ing  place over a 
t empera ture  range cor responding  to the range 
over  which C o changes, i.e. abou t  20~  will be 
found.  This is in accordance  with observat ion.  
Given these weakly  restrictive assumpt ions  the 
re la t ion of  the present  calculat ions to the free 
volume format ion ,  may  be under s tood  qual i ta t -  
ively. 
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